

FURTHER SESTERTERPENES FROM *SALVIA HYPOLEUCA*

A. RUSTAIYAN and S. KOUSSARI

Department of Chemistry, Shahid Beheshty University, Eeven, Tehran, Iran

(Received 23 September 1987)

Key Word Index—*Salvia hypoleuca*; Labiatea; sesterterpenes.

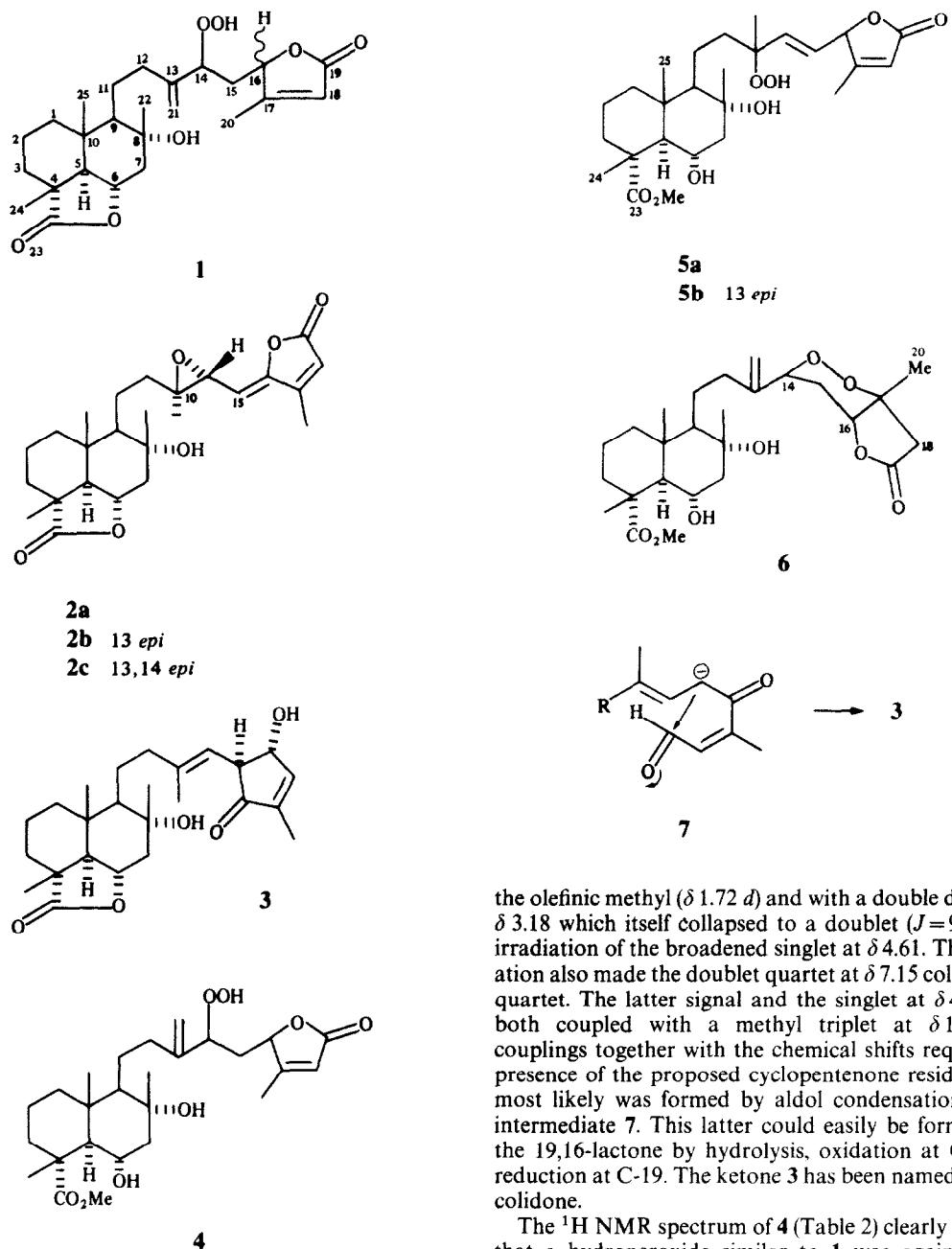
Abstract—The polar fractions of *Salvia hypoleuca* afforded several further sesterterpene lactones, a hydroperoxide, three isomeric epoxides and a monolactone with an additional carbocyclic ring, all derived from salvileucolide lactone, as well as several salvileucolide methyl ester derivatives with a hydroperoxide group. The structures were elucidated by high field ^1H NMR spectroscopic methods.

INTRODUCTION

Recently we have isolated some sesterterpenes with a new carbon skeleton from *Salvia hypoleuca* Benth [1] and from *S. syriaca* L. [2]. We have now studied the more polar fractions of *S. hypoleuca* which afforded several further sesterterpenes, the salvileucolide methyl ester derivatives **4**, **5a**, **5b** and **6** as well as the isomeric epoxides **2a**–**2c** and the hydroperoxide **1** derived from salvileucolide-6,23-lactone and a sesterterpene with a further new carbon skeleton, the ketone **3**.

RESULTS AND DISCUSSION

The structure of **1** followed from the ^1H NMR spectrum (Table 1) which was in part close to that of salvileucolide-6,23-lactone [1]. However, one of the olefinic methyl singlets was replaced by a pair of broadened singlets at δ 5.21 and 5.06, a broadened singlet at δ 9.47 and a doublet at δ 4.73. In addition the CIMS


showed the highest peak at m/z 449. Therefore the presence of a hydroperoxide was likely. Spin decoupling starting with H-16 confirmed this assumption. However, the relative configuration at C-8, C-14 and H-16 could not be determined.

The ^1H NMR spectra of **2a** and **2b** (Table 1) also were close to that of salvileucolide-6,23-lactone. Again the signals of the olefinic double bond were replaced by methyl singlets at δ 1.37 and 1.43 and doublets at δ 3.82 and 3.79 respectively. Furthermore, new olefinic signals at δ 5.09 and 5.14 respectively were visible. In agreement with the molecular formula, the presence of epimeric epoxides derived from the dehydro derivative of salvileucolide-6,23-lactone was very likely. The relative configuration at C-13 and C-14 was determined by the observed NOEs. Thus in the case of **2b** NOE between H-21 and H-14 was observed. Further NOEs established that the remaining stereochemistry was unchanged from that of salvileucolide-6,23-lactone and also allowed the assignment of the methyl signals. Thus clear effects were

Table 1. ^1H NMR spectral data of compounds **1**, **2a**–**2c** and **3** (400 MHz, CDCl_3)

H	1	2a	2b	2c	3	H	1–3
12	2.44 ddd 2.19 ddd	1.85 m	1.85 m	1.85 m	2.48 ddd 2.17 ddd	5	1.52 d
14	4.73 dd	3.82 d	3.79 d	3.83 d	5.09 dq	6	4.21 ddd
15	2.11 ddd 1.49 ddd	5.09 br d	5.14 br d	5.10 d	3.18 dd	7 α	2.45 dd
16	5.04 br d	—	—	—	—	7 β	1.67 m
18	5.81 dq	6.01 dq	6.01 dq	6.01 dq	7.15 dq	9	1.20 dd
19	—	—	—	—	4.61 br s	11	1.62 m
20	2.06 br s	2.16 d	2.16 d	2.17 d	1.82 dd	11'	1.81 m
21	5.21 br s 5.06 br s	1.37 s	1.43 s	1.37 s	1.72 d	22	1.28 s
OOH	9.47 s	—	—	—	—	24	1.19 s
						25	0.92 s

J [Hz]: 5,6 = 6,7 α = 11; 6,7 β = 4; 9 α , 11 = 5; 9 α , 11' = 4; 11, 11' = 14; 11, 12 = 11', 12' = 7; compound **1**: 14, 15 = 10; 14, 15' = 3; 15, 15' = 15; 15, 16 = 1.5; 15', 16 = 11; 18, 20 = 1; compounds **2a**–**2c**: 14, 15 = 8; 15, 18 = 1; 18, 20 = 1; compound **3**: 14, 15 = 9; 14, 21 = 1; 15, 19 = 2.5; 18, 19 = 19 = 18, 20 = 19, 20 = 1.

present between H-24, H-25 and H-6 and between H-22, H-25 and H-7 β in both isomers (**2a** and **2b**). The *Z*-configuration of the 15,16-double bond followed from the NOE between H-20 and H-15 which were observed in all three isomers. The ^1H NMR data and the optical rotation of **2c** differed slightly from those of **2a** and the NOE between H-21 and H-15 indicated a presence of a 13, 14-*bis-epi*-isomer of **2a**. The relative configuration at C-13 and C-14 in the isomers **2a**–**2c** could not be determined.

The ^1H NMR spectrum of **3** (Table 1) again was close to that of salvileucolide-6,23-lactone. However, the second lactone moiety was now missing. Spin decoupling led to a sequence which required a cyclopentenone group. Thus a doublet quartet at δ 5.09 was coupled with

the olefinic methyl (δ 1.72 *d*) and with a doublet at δ 3.18 which itself collapsed to a doublet ($J=9$ Hz) on irradiation of the broadened singlet at δ 4.61. This irradiation also made the doublet quartet at δ 7.15 collapse to a quartet. The latter signal and the singlet at δ 4.61 were both coupled with a methyl triplet at δ 1.82. The couplings together with the chemical shifts required the presence of the proposed cyclopentenone residue which most likely was formed by aldol condensation via the intermediate **7**. This latter could easily be formed from the 19,16-lactone by hydrolysis, oxidation at C-16 and reduction at C-19. The ketone **3** has been named salvileucolide.

The ^1H NMR spectrum of **4** (Table 2) clearly indicated that a hydroperoxide similar to **1** was again present. However, the 6,23-lactone ring was replaced by the corresponding hydroxy ester. Accordingly, the signals were in part identical with those of salvileucolide methyl ester.

The ^1H NMR spectra of **5a** and **5b** (Table 2) nicely agreed with the presence of 13-epimeric hydroperoxides derived from salvileucolide methyl ester. The configuration of the Δ^{14} -double bond followed from the coupling. The relative configurations of C-8 and C-13 could not be determined. Triphenylphosphine reduction of **5a** gave the corresponding alcohol with the expected shifts in the ^1H NMR spectrum (see Experimental).

The last compound (**6**) was also derived from salvileucolide methyl ester as followed from the ^1H NMR spectrum (Table 2). However, the butenolide part was now changed as the olefinic proton (H-18) was replaced by a pair of doublets at δ 2.64 and 2.51. As the olefinic methyl

Table 2. ^1H NMR spectral data of compounds 4, 5a, 5b and 6 (400 MHz, CDCl_3)

H	4	5a	5b	6	H	4-6
12	2.37 <i>ddd</i>	2.23 <i>m</i>	2.23 <i>m</i>		5	2.07 <i>d</i>
12'	2.14 <i>ddd</i>	2.01 <i>m</i>	2.04 <i>m</i>	2.18 <i>m</i>	6	3.63 <i>ddd</i>
14	4.73 <i>dd</i>	5.89 <i>dd</i>	6.14 <i>br d</i>	5.72 <i>dd</i>	7 α	1.60 <i>m</i>
15,	2.16 <i>ddd</i>	5.44 <i>dd</i>	5.42 <i>dd</i>	2.24 <i>ddd</i>	7 β	2.23 <i>dd</i>
15'	1.49 <i>ddd</i>			2.07 <i>ddd</i>	9	1.15 <i>dd</i>
16	5.06 <i>br d</i>	5.16 <i>br d</i>	5.18 <i>br d</i>	4.46 <i>t</i>	11	1.64 <i>m</i>
18	5.81 <i>dq</i>	5.82 <i>dq</i>	5.82 <i>dq</i>	2.51 <i>d</i>	11'	1.85 <i>m</i>
20	2.06 <i>br s</i>	2.03 <i>br s</i>	2.03 <i>br s</i>	1.58 <i>s</i>	22	1.27 <i>s</i>
21				5.06 <i>br s</i>	24	1.23 <i>s</i>
	5.08 <i>br s</i>	1.36 <i>s</i>	1.25 <i>s</i>			5.05 <i>br s</i>
OOH	9.64 <i>s</i>	0.30 <i>s</i>	9.58 <i>s</i>	—	25	0.87 <i>s</i>
					OMe	3.65 <i>s</i>

J[Hz]: 5, 6=6, 7 α =11; 6, 7 β =4; 9, 11=5; 9, 11'=4; compound 4 as compound 1; compounds 5a/b: 14,15=16; 15,16=8; 14,16=16,18=16,20 1; compound 6: 14,15=11; 14,15'=3.5; 15,15'=13; 15,16=15'; 16=3; 18,18'=18.

signal was now replaced by a singlet at δ 1.58 the compound must be formed by addition of an oxygen function at the conjugated double bond. Spin decoupling indicated that the allylic proton (H-14) was coupled with a pair of threefold doublets at δ 2.24 and 2.07 which themselves were coupled further with H-16 (4.46 *t*). This data as well as the CIMS could only be rationalized by a cyclized hydroperoxide. Irradiation of H-20 gave a clear NOE with H-18 and H-16. The latter showed a NOE with H-15 α while H-14 gave no NOE with H-16.

The isolation of all these sesterterpenes may be an indication that these compounds are characteristic for this genus *Salvia*. However, further investigations are needed to establish whether these compounds are widespread in this genus.

EXPERIMENTAL

The air-dried aerial parts (550 g, voucher deposited in the Herbarium of the Dept of Botany, Shahid Beheshti University, Tehran, Iran, were extracted at room temp. with MeOH-Et₂O-petrol (1:1:1). After evapn under red. pressure the residue was treated with MeOH to remove long chain saturated hydrocarbons. The extract was separated by CC (Silica). The polar fractions (Et₂O to Et₂O-MeOH, 9:1) were further separated first by medium pressure chromatography (silica gel, ϕ 30–60, 3 bar, Et₂O-petrol, 1:1 to Et₂O-MeOH, 4:1) and then by HPLC (RP 8, *ca* 100 bar, flow rate *ca* 2 ml/min). 10 mg 2a (*R*, 13.5 min), 8 mg 2a (*R*, 16 min) and 12 mg 2b (*R*, 17 min.). HPLC of fractions 30–83 (MeOH-H₂O, 13:7) gave 6 mg 3 (*R*, 12, min.). HPLC of fractions 84–112 (MeOH-H₂O, 3:2) gave 15 mg 1 (*R*, 15 min), 10 mg 4 (*R*, 13 min), 5 mg 6 (*R*, 11 min), 10 mg 5a (*R*, 9 min) and 10 mg 5b (*R*, 7.5 min).

14-Hydroperoxy-13(21)-dehydro-13,14-dihydrosalvileucolide-6,23-lactone (1). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3580 (OH), 1780, 1765 (γ -lactone); CIMS *m/z* (rel. int.): 449 [M+1]⁺ (8) ($\text{C}_{25}\text{H}_{36}\text{O}_7$ +1), 431 [449-H₂O]⁺ (92), 415 [449-H₂O₂]⁺ (64), 413 [431-H₂O]⁺ (67), 321 (70), 303 (86), 291 (100); $[\alpha]_D^{24^\circ}$ +13 (CHCl_3 ; *c* 0.12).

15,16-Dehydrosalvileucolide-6,23-lactone-trans-epoxide (2a). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3580 (OH), 1780, 1765 (γ -lactone); MS *m/z* (rel. int.): 430 [M]⁺ (0.2), 412.222 [M-H₂O]⁺ (3) (calc. for $\text{C}_{25}\text{H}_{32}\text{O}_5$; 412.225), 394 [412-H₂O]⁺ (2), 291 (21), 245 (31), 179 (57), 140 (100); $[\alpha]_D^{25^\circ}$ +9 (CHCl_3 ; *c* 0.28).

cis-Epoxide (2b). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3580 (OH), 1780, 1765 (γ -lactone); MS *m/z* (rel. int.): 430.235 [M]⁺ (2) (calcd for $\text{C}_{25}\text{H}_{34}\text{O}_6$; 430.235), 412 [M-H₂O]⁺ (5), 397 [412-Me]⁺ (5), 370 [412-CO₂]⁺ (6), 220 (10), 205 (24), 109 (100); $[\alpha]_D^{24^\circ}$ +12 (CHCl_3 ; *c* 0.25).

13,14-bis-epi-trans-Epoxide (2c). Colourless gum; MS *m/z* (rel. int.): 430.235 [M]⁺ (2) (calc. for $\text{C}_{25}\text{H}_{34}\text{O}_6$; 430.235), 412 (5), 397 (4), 370 (5), 109 (100); $[\alpha]_D^{24^\circ}$ +140 (CHCl_3 ; *c* 0.12).

Salvileucolide (3). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3580 (OH), 1760 (γ -lactone), 1680 (C=CC=O); CIMS *m/z* (rel. int.): 417 [M+1]⁺ (100) ($\text{C}_{25}\text{H}_{36}\text{O}_5$ +1), 399 (40), 381 (22); $[\alpha]_D^{24^\circ}$ -42 (CHCl_3 ; *c* 0.1).

Hydroperoxide 4. Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3600 (OH), 1765 (γ -lactone), 1740 (CO₂R); CIMS *m/z* (rel. int.): 481 [M+1]⁺ (1) ($\text{C}_{26}\text{H}_{40}\text{O}_8$ +1), 463 [481-H₂O]⁺ (6), 447 [481-H₂O₂]⁺ (5), 317 (66), 279 (71), 263 (100); $[\alpha]_D^{24^\circ}$ +26 (CHCl_3 ; *c* 0.21).

Hydroperoxide 5a. Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3600 (OH), 1760 (γ -lactone), 1735 (CO₂R); CIMS *m/z* (rel. int.): 481 [M+1]⁺ (2), 463 (6), 447 (8), 323 (68), 305 (64), 279 (100), 263 (84); $[\alpha]_D^{24^\circ}$ -15 (CHCl_3 ; *c* 0.1); Addition of triphenylphosphine in CHCl_3 afforded the corresponding carbinol; ^1H NMR (CDCl_3): δ 5.95 (*br d*, H-14), 5.42 (*dd*, H-15), 5.21 (*br d*, H-16), 1.28 (*s*, H-21) (remaining signals as in 5a).

Hydroperoxide 5b. Colourless gum; CIMS *m/z* (rel. int.): 481 [M+1]⁺ (2), 463 (8), 447 (12), 323 (61), 305 (100), 279 (64), 263 (44).

Cyclic peroxide 6. Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm⁻¹: 3600 (OH), 1775 (γ -lactone), 1735 (CO₂R); CIMS *m/z* (rel. int.): 481 [M+1]⁺ (2), 463 (62), 445 (31), 427 (46), 335 (45), 317 (100), 299 (62); $[\alpha]_D^{24^\circ}$ +18 (CHCl_3 ; *c* 0.12).

Acknowledgements—A.R. thanks Prof. F. Bohlmann (Technical University, Berlin) for providing the opportunity to work in his Institute and helpful discussions. The help in structure elucidation by Dr. J. Jakupovic (Technical University, Berlin) is gratefully acknowledged.

REFERENCES

1. Rustaiyan, A., Niknejad, A., Nazarians, L., Jakupovic, J. and Bohlmann, F. (1982) *Phytochemistry* **21**, 1812.
2. Rustaiyan, A. and Sadjadi, A. (1987) *Phytochemistry* **26**, 3078.